9 research outputs found

    Rectus Fascia Sling for the Treatment of Total Urethral Incontinence in Males

    Get PDF
    Objectives: Urinary incontinence in patients with neurological disease is a major health problem. A modified rectus fascial sling has been assessed in incontinent male patients.Patients and Methods: Fourteen adult male patients with total incontinence due to neurogenic or post-traumatic and etiology were included in this study. A rectangular rectus sheath flap was harvested and defatted.The flap was placed around the bulbar urethra and sutures were passed both in front of and behindthe pubic bone. Both sutures on each sidewere tied to each other over the pubic bone.Results: Of the 14 patients, 9 (64.3%) were completely dry, 3 (21.4%) reported improved continence, while 2 (14.3 %) were a failure. In total, 71.4% of the patients showed significant improvement using the Incontinence Quality of Life (IQoL) questionnaire. A significantdecrease in the number of pads used per day of 61.3 % (

    A multi-biometric iris recognition system based on a deep learning approach

    Get PDF
    YesMultimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. In this paper, an efficient and real-time multimodal biometric system is proposed based on building deep learning representations for images of both the right and left irises of a person, and fusing the results obtained using a ranking-level fusion method. The trained deep learning system proposed is called IrisConvNet whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from the input image without any domain knowledge where the input image represents the localized iris region and then classify it into one of N classes. In this work, a discriminative CNN training scheme based on a combination of back-propagation algorithm and mini-batch AdaGrad optimization method is proposed for weights updating and learning rate adaptation, respectively. In addition, other training strategies (e.g., dropout method, data augmentation) are also proposed in order to evaluate different CNN architectures. The performance of the proposed system is tested on three public datasets collected under different conditions: SDUMLA-HMT, CASIA-Iris- V3 Interval and IITD iris databases. The results obtained from the proposed system outperform other state-of-the-art of approaches (e.g., Wavelet transform, Scattering transform, Local Binary Pattern and PCA) by achieving a Rank-1 identification rate of 100% on all the employed databases and a recognition time less than one second per person

    OSR1-sensitive renal tubular phosphate reabsorption

    Get PDF
    Background: The oxidative stress-responsive kinase 1 (OSR1) participates in the WNK-(with no K) kinase dependent regulation of renal salt excretion and blood pressure. Little is known, however, about the role of OSR1 in the regulation of further renal transport systems. The present study analyzed the effect of OSR1 on NaPiIIa, the major renal tubular phosphate transporter. Methods: Immunohistochemistry and confocal microscopy were employed to determine renal localization of OSR1 and NaPiIIa. To elucidate the effect of OSR on NaPiIIa activity, cRNA encoding NaPiIIa was injected into Xenopus oocytes with or without additional injection of cRNA encoding OSR1, and phosphate transport was estimated from phosphateinduced currents determined with dual electrode voltage clamp. To elucidate the in vivo significance of OSR1 serum phosphate and hormone concentrations as well as urinary phosphate output of mice carrying one allele of WNK-resistant OSR1 (osr1(tg/+)) were compared to the respective values of wild type mice (osr1(+/+)). Results: NaPiIIa and OSR1 were both expressed in proximal renal tubule cells. Coexpression of OSR1 significantly up-regulated phosphate-induced currents in NaPiIIa-expressing Xenopus oocytes. Despite decreased serum phosphate concentration urinary phosphate excretion was significantly increased and NaPiIIa protein abundance in the brush border membrane significantly reduced in osr1(tg/+) mice as compared to osr1(+/+) mice. Serum PTH and calcitriol levels were similar in osr1(tg/+) mice and in osr1(+/+) mice, serum FGF23 concentration was, however, significantly higher in osr1(tg/+) mice than in osr1(+/+) mice. Conclusions: OSR1 is expressed in proximal renal tubules and participates in the regulation of FGF23 release and renal tubular phosphate transport

    Bioinformatics resources for pollen

    No full text
    corecore